Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation

نویسندگان

  • Wieland G. Reis
  • R. Thomas Weitz
  • Michel Kettner
  • Alexander Kraus
  • Matthias Georg Schwab
  • Željko Tomović
  • Ralph Krupke
  • Jules Mikhael
چکیده

The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (10(5)) and field-effect mobilities (17 cm(2)/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation

Corrigendum: Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation Wieland G. Reis, R. Thomas Weitz, Michel Kettner, Alexander Kraus, Matthias Georg Schwab, Željko Tomović, Ralph Krupke & Jules Mikhael Scientific Reports 6:26259; doi: 10.1038/srep26259; published online 18 May 2016; updated on 20 July 2016 In this Article, there are typographi...

متن کامل

Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation

The potential of single-walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But...

متن کامل

Magnetic nanoparticle-based separation of metallic and semiconducting carbon nanotubes.

We report a simple and scalable method for the separation of semiconducting single-walled carbon nanotubes (SWNTs) from metallic SWNTs using magnetic nanoparticles (MNPs) functionalized with polycationic tri-aminated polysorbate 80 (TP80). MNPs-TP80 are selectively adsorbed on acid-treated semiconducting SWNTs, which makes the semiconducting SWNTs be highly concentrated to over 95% under a magn...

متن کامل

Large-scale separation of metallic and semiconducting single-walled carbon nanotubes.

In the applications of single-walled carbon nanotubes (SWNTs), it is extremely important to separate semiconducting and metallic SWNTs. Although several methods have been reported for the separation, only low yields have been achieved at great expense. We show a separation method involving a dispersion-centrifugation process in a tetrahydrofuran solution of amine, which makes metallic SWNTs hig...

متن کامل

Dispersion and separation of small-diameter single-walled carbon nanotubes.

The dispersion of small-diameter single-walled carbon nanotubes (SWNTs) produced by the CoMoCAT method in tetrahydrofuran (THF) with the use of amine was studied. The absorption, photoluminescence, and Raman spectroscopies showed that the dispersion and centrifugation process leads to an effective separation of metallic SWNTs from semiconducting SWNTs. Since this method is simple and convenient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016